
NOTATION 

Ti, temperature of the i-th OTC, K; P0i, power of the internal heat generation in the 
OTC, W; ~i, convective heat-transfer coefficient at the section in contact with the i-th 
OTC, W/(m2"K); S i, surface area of convective heat exchange at the segment in contact with 
the i-th OTC, m2; c, specific heat capacity of the coolant, J/(kg'K); M, mass flow rate of 
the coolant, kg/sec; Tw, temperature of the conduit wall, K; Tf, temperature of the coolant 
flow, K; ~rad, coefficient of radiative heat exchange between the conduit and the ambient 
medium, W/(m2"K); Ura d, outside perimeter of the conduit, m; L, length of the conduit, m; 
~con, coefficient of convective heat exchange in the heat exchanger, W/(m2"k); Uins, inside 
perimeter of the conduit, m; h, coefficient of thermal conductivity for the material of the 
conduit, W/(m.K); F, cross-sectional area of the conduit, m 2. 
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THE CONTROL OF QUASIUNIFORM HEATING OF A CYLINDRICAL SPECIMEN 

IN AN INDUCTOR 

A. Yu. Kuyanov, V. B. Glasko, and A. N. Tikhonov UDC 537.321 

We have used a computer mathematically to experiment with and to formulate solu- 
tions for the problem of optimum control by means of quasiuniform heating of 
Foucault currents in cylindrical steel specimens. 

The technology used in the heat treatment of metal specimens requires that they be heated 
^ 

uniformly, within the limits of some tolerance 6, to a specified temperature u. Such quasi- 
uniform heating, regardless of its source, can either be achieved within some given interval 
of time, or within a minimum period of time whose estimation is of interest from the stand- 
point of economic control of the technological processes. 

The problems of using quasiuniform heating to achieve control have been examined, in 
particular, in [I, 2], where the control functions where the temperature of the outside medium 
for the flow of heat coming from the outside was taken as a function of time. 

In this paper, the heating is achieved by means of Foucault currents that are generated 
within the specimen by means of a high-frequency field from a solenoid inductor into which 
the specimen has been placed. 

Within the framework of the axial-symmetric three-dimensional-uniform model in [3, 4] 
a method is applied to the problems of annealing steel specimens for purposes of calculating 
the temperature field generated by such a source. 
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Fig. i. Heat capacity c, J/(kg-K), density p'103, kg/m 3, ther- 
mal conductivity ~, W/(m'K), specific conductivity X'I06, i/ 
(~.m), and relative magnetic permeability p as functions of the 
temperature u, ~ 

We have in mind the heat that is generated in welding, i.e., to temperatures higher 
than those used in the cited references, and unlike these works, we also necessarily make 
provision for the radiative exchange of heat at the surface. 

i. The induced electromagnetic field (E, H), in analogy with [3, 4], is described in 
quasisteady approximation and an algorithm is developed to determine the temperature u = 
u(r, t) of the cylindrical specimens by means of the following system of differential equa- 
tions: 

1 0 ( rk  + 1 Ou 
r Or ~ V (u)IEI = = c (u) p (u) - - ~ - ,  r C (.0, R), t ~ (0, ~ ,  

1 0 r OH \ (1) 

w i t h  the  c o n d i t i o n s :  

= x ( u l , = R -  Uo) + ~(O"lr=R--0g), @ = o  = Uo, = O, - -  X (u) ---~-r - ,=~ 
r--O 

OH ! = 0 ,  HD=a .... hi(t).  
(~f Ir=-O 

Here 8 = 273.15 + u; 80 = 0It=0; 

( 2 )  

__i 
E (r, t) = J ie~ (u) ~o H (r', t) r 'dr ' ;  

r o 

n ( -100 )  denotes the  number o f  s o l e n o i d  w ind ing  t u r n s  per  u n i t  l e n g t h ;  I ( t )  i s  the  ampJi tude 
o f  the  c u r r e n t  s t r e n g t h  in  the  i n d u c t o r ,  i . e . ,  the  c o n t r o l  f u n c t i o n ;  ~ ( 2 ~ . 2 . 5 . 1 0 3  l / s e c )  i s  
the cyclical frequency. 

Let us note that the approximation equation for the magnetic field is validated by the 
condition 

whose satisfaction should be verified during the course of the mathematical experiments in- 
volved in the search for I(t). 

Figure 1 [5] shows the physical parameters of the material, i.e., thermal conductivity 
X, heat capacity c, density p, specific electrical conductivity ~, and the relative magnetic 
permeability u, as functions of temperature. 
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In order to solve this problem for each given l(t) we make use of an implicit first- 
order approximation difference scheme for t and a second-order approximation for r [6]. The 
boundary conditions for these two fields were approximated with second-order accuracy, which 
is significant in the presence of a skin effect and by taking the radiative exchange of heat 
into consideration. The solution of the corresponding system of algebraic equations is de- 
termined algorithmically by the sweeping method [6] that is used in the iteration cycle [3] 
in view of the nonlinearity of the problem. The computer program that employs this complex 
of methods serves as the data unit for the temperature field in solving the problems of con- 
trol within the framework of variational formulations. 

2. In analogy with [2] let us introduce the following significant functional into our 
examination: 

R 

@T (I) -~- t" [u (r, T, I (t)) - -  ~ 1~ rdr, (4) 
0 

where u(r, T, l(t)) is the temperature field at a finite instant of heating time T, gener- 
ated by the control function l(t), while u is the required level of heating. 

Let 6 be the nonuniformity tolerance, so that the sought function l(t) must satisfy the 
condition ~T(1) ~ 6. 

The possible instability in the variational problems [7], leading to the solutions, is 
virtually unattainable, requires consideration within the formulation of the conditions of 
realization, one of which, in the problem under consideration, is the limitation on the cur- 
rent strength: 0 ~ l(t) ~ Ima X. Let us note: if condition (3) is also explicitly included 
in the formulation of the problem, then the limitation on the current strength means that 
a limitation is also imposed on its derivative, which ensures the compactness of the set 
{l(t)} within a class of continuous functions, which means [7] that the problem of finding 
l(t) is stable. 

Let us examine the various aspects of the mathematical formulation of the control prob- 
lem. 

The problem of seeking out the control function l(t), which, at the given instant of 
time T, within the limits of the tolerance 6, provides a uniform temperature field, can be 
formulated as a variational problem with respect to the set, having the following limitations: 

Or ( I ) ~  8, I(t) EK ~- ~ l i  (t) CC [0, T]:0 ~ l ( t ) ~ / m a x ,  d--~t ] ~ e~I }, (5) 

where r ~ i is some given parameter. 

We note that there may be no solution to problem (5) because the parameters 6, Imax, 
and T are, in actual practice, given as independent of each other. In this event, where the 
value of Ima x for the^power supply is not overly large may be inadequate for purposes of heat- 
ing to a temperature u within the given time T; this situation becomes even more difficult 
because the presence of the skin effect raises the nonuniformity of the field, so that at 
the a priori given instant of time T we may have ~T(1) > 5. We will proceed on the basis 
that the parameters have been coordinated so that there exists at least one solution to prob- 
lem (5) (the problem is consistent [7]). 

The possible nonidentity of the solution for a finite 5 is insignificant from the stand- 
point of the control problem. However, stability is assured through the choice of the set K. 

A solution can be found for problem (5) by making use of the familiar methods of mini- 
mizing the functional ~T on the set K [8], so as to carry out some iteration process with 
respect to the given initial approximation. However, in actual practice it is more conveni- 
ent to use a different formulation which makes indirect provision for the limitation imposed 
on the derivative of the current. Specifically, let us introduce the conditional stabilizer 
[7, 9]: 

T 

(O ------ ~ (1'(t)) ~ ~,  / ' (o )  = o, i ( r )  = O. 
0 
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In this event, the following variational problem is correct under the consistency condition: 

(I (t) .= arg in[ Q (I), I (t) 6 K6 ----- {[ (0 C C r (0, T); Oz (I) ~ 6, 0 < I (t) ~ I~a~, 
( 6 )  

I '(0) = 0, 1 (T) =: 0}. 

The algorithm for the solution of this problem Will be dealt with in the following section. 

Problem (6) [or (5)] may be treated as an element of another problem, which deals with 
the determination of the minimum time T* and the corresponding control function I*(t) under 
all the previous conditions imposed on the temperature field. This problem (the problem of 
rapid action) is formulated in analogy with [2] for the functional T(I), implicitly defined 
by conditions (6): 

T* = T (l*) - -  inf T (I), I (1) ~ K~. ( 7 )  

An a p p r o x i m a t e  s o l u t i o n  f o r  t h i s  p r o b l e m  c a n  be f o u n d  [2]  on a g r i d  o f  v a l u e s  {Ts} , s = 
1, 2 . . . . .  m, Ts+ 1 < T s ,  a t  e a c h  p o i n t  o f  w h i c h  p r o b l e m  ( 6 )  i s  s o l v e d  f o r  I s .  As a r e s u l t  
of the solution of this last problem, in the case of sequential s we obtain 

~)* (T 8) = D r ,  (Is). 

Numerical experimentation reveals a natural monotonic increase in r with a reduc- 
tion in T, and to the extent that with a sufficiently large T, ~*(T) < 6, there exists a root 
of the equation ~*(T) = 6. This root T*, approximated on the introduced grid, is obviously 
the sought minimum value, and the corresponding solution of problem (6) is the sought control 
l*(t), te [0, T*]. 

It is equally obvious, in turn, that the values IT*, I*(t)] can be refined by utilization 
of a more exact method for the solution of the equation $*(T) = 6 with an algorithmically 
determined left-handside. 

Problems (5) and (7) can be markedly simplified, if we look for the control on the set 
of constant current-amplitude values: I(t) ~ I = const, t�9 [0, T]. In this case, condi- 
tion (3) is automatically satisfied, and the magnitude of the control currents which provides 
for the quasiuniform heating over the given interval of time is defined by the problem 

c D r ( 1 ) ~ 6 ,  1 6 K o ~ { 1 6 R  ~ O < l  ~lma~}. ( 5 ' )  

For the solution of this problem it is enough to find the minimum ~m of the function 
r on [0, Imax]. If Sm ~ 6, the corresponding value of I m is the solution; in the oppo- 
site case, problem (5') is inconsistent and the parameters Imax, 6, and T must be corrected. 

Let us also examine the problem of determining the optimum heating time with a control 
analogous to (5'): 

T* - -  inf T (I) ,  I E K0. ( 7 '  ) 

The method f o r  i t s  s o l u t i o n  does not  d i f f e r  from the  one desc r i bed  above f o r  problem ( 7 ) ,  
and it is only the functional T(]) that is implicitly determined by conditions (5'). 

3. Solution of problem (6) can be found by means of the general regularizing Tikhonov 
operator [7]. In this case, the sought I(t) can be chosen from the sequence of extrema of 
the smoothing functional Fep(I) = ST(I) + ap(~)(I), Up + 0, which is minimized for each aP 
on the set 

- -  { l ( t )  O< l(t) %lm~," I ' (0) = O, I (T)  = 0}. 

If Iap(t) is the extremum, the required approximation I~(t) is determined by the condi- 

tion ~=max~ v, M~{/%,:~r(I~)~}. With the chosen stabilizer [9] 
M 

R 

lira I~p(t) -- O, lira F~p(l=p) = Dr (0)-~- j" (Uo-- u)~ rdr. 

Therefore, and because of the monotonic diminution of ~(ap) = ~T(la ) as ~p ~ 0, we can use 

the described algorithm if 6 < @T(0) (in the opposite case u 0 ~ u w~thin the limits of the 
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Fig. 2. The optimum values of %*(T) and control I, A, as func- 
tions of the process time T, sec, in problem (5'). 

Fig. 3. Solution of problem (7) l(t), A, and the corresponding 
maxu(r, t), ~ as functions of the time t, sec. 
r 

given error the problem loses sense). On the other hand [9], this algorithm is convenient 
from the standpoint that for the initial approximation to find l~p we can take the earlier 

found ISD-Z' and if s 0 is sufficiently large, the initial starting point for the determina- 

tion of ~Sp will be l(t) ~ 0. 

We used the method of gradient projection [I] (on the set ~) to minimize the functionals 
in all of the cases. For problem (6) its simplest modification is described by the formula 

l~,+x (t) = [ lv.ax 

when 0 < Ik+l < /max, 

when lh+l ~ 0, 

when Ik+* ~/max, 
(8) 

where F S '(I k) is the value of the gradient of the corresponding functional and v k is chosen p 
on the basis of the condition: 

vh = avg inf Fc, p(l~ -- vF~,(lk)), 

which corresponds to the "steepest descent" [i]. We can be assured that 

F~ (1) == O~ (1) -- 2,~l"(t), 

where for the second derivative of the current we employ the finite-difference second-order 
approximation of accuracy. The gradient #T' of the functional ~T replaces ' in formula 
(8) for problem (5'). FSP 

The value of ~T' (Ik) is determined algorithmically by means of the boundary-value prob- 
lem [i, i0] conjugate to (1)-(2). In this case, it is convenient to utilize the linearization 
of the latter, referring to the temperature-dependent coefficients to the previous iteration. 
Let the temperature increment Au correspond to the increment Al(t). Then 

R R 
A~)T :: 2 S iu (r, T; ])--u] Au (r, T) rdr -~- ~' [Au (r, T)]Zrdr ~ V I -~- V 2. 

o 

In view of the linearization 

TR 

Vt : j' ~V ( uk)l E I'~ (r, t) A l / l k  rdrdl, 
o o 

where ~(r, t) is the solution of the conjugate boundary-value problem: 
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t a (r 8~[: ) ar -o ,  T>t>/O, O < r < R ,  ~. (t,k) - -~  -~r \ --~r + c (u~,) ,o (u~,) at 

2 (u~ (r, r ) - -  h) 
~blt=r = 

c (uh) p (uh) 

L I O~b O~ = r V (uh)lr=n, a,- . : 0 =  o, - ~ (.,,) ~ ~:,~ 

V (uh) = • -}- 40" (uh -F- 273. ! 5) 3.. 

(9 )  

This problem is solved in parallel with (1)-(2) with the aid of the analogous difference 
scheme. 

As a consequence of the upper and lower bounds of the physical parameter-coefficients 
in (1)-(2) for V 2 we obtain the estimate: 

T 

V~ ~ C .[ (AI) 2 dt - -  C II AI  I1[~, 
0 

where the constant C is independent of AI. 

Thus, A~ T = (B, AI)L2 + O(IIAIIIL22) and by definition [ii] we differentiate the approxi- 
mate functional ~T 

R 

r  (&)  ~ B = .[ ~ (u~) I E I ~" ~ (r, t)/I~ (t) rdr. (10) 
0 

4. Some of the results from the solution of the control problems for the heating of 
steel specimens, as presented below, pertain to St40 steel with the following values for the 
parameters of the problem: u 0 = 20~ u = 1400~ o = 0.7o0, < = 0, 6 = 0.0288, Ima x = 1500 
A, where o 0 is the Stefan-Boltzmann constant. 

We see from Fig. 2 that T*, corresponding to the solution of problem (7'), is equal to 
117 sec. In this case, I* = 1193 A. We should also take note of the possibility of a more 
uniform heating of the specimen by a current of constant amplitude, where 6 = 6 m = 0.0167. 
This corresponds to a process duration of T = 149 sec, and a current strength of I = 1089 A. 

Figure 3 shows the results for the solution of the high-speed problem (7). The rela- 
tionship between the amplitude of the control current and maxu(r, t) corresponds to the mini- 

r 
mum T* = 79 sec. 
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